Skip to content

Configurable step size instead of hard-coded default values for adafactor #535

@lamthuy

Description

@lamthuy

The current implementation of the adafactor is consistent with the paper's default hyperparameters choice. In particular, in the get_lr function at

def _get_lr(self, param_group: ParamGroup, param_state: State) -> float:

We can see that if relative_step is True, the input learning rate by users is ignored and instead the learning rate is time-dependent defined as:

if param_group["relative_step"]:
            min_step = (
                1e-6 * param_state["step"]
                if param_group["warmup_init"]
                else 1e-2
            )
            rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))

That means the learning rate is defined as min(1e-6*t, 1/sqrt(t)) if warmup_init is set to True and min(1e-2, 1/sqrt(t)) otherwise. This hard-coded values 1e-6 and 1e-2 is not an optimal choice and the best values are data-dependent. I would suggest to change those lines to:

if param_group["relative_step"]:
            min_step = (
                param_group["lr"] * param_state["step"]
                if param_group["warmup_init"]
                else param_group["lr"]
            )
            rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))

That enables the users to configure those hyper-parameters via the input learning rate.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions